Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. CFD-based analysis for finding critical wall roughness on centrifugal pump at design and off-design conditions
 
  • Details
Options

CFD-based analysis for finding critical wall roughness on centrifugal pump at design and off-design conditions

Date Issued
01-01-2019
Author(s)
Deshmukh, Dhairyasheel
Samad, Abdus 
Indian Institute of Technology, Madras
DOI
10.1007/s40430-018-1557-y
Abstract
Three-dimensional numerical analyses were conducted to study fluid flow behavior over the rough surface in an electric submersible pump at the design and off-design conditions. The entire range of smooth, transition and fully rough surfaces was considered for the study of the turbulent boundary layer properties and its effect on the pump performance. The calculated performance using CFD showed a good agreement with the experimental data. For wall-bounded turbulent flow through a pump passage, the k–ω SST turbulence model was used along with automatic wall function. To study wall roughness effect at the design and off-design conditions, the parameters such as flow rate, impeller speed and roughness factors were varied. Strong interaction between the rough wall and fluid changes the pressure, velocity gradients and turbulence parameters within boundary and affects the overall pump performance. The result showed that performance initially reduced to a critical value as the roughness increased and increased thereafter. A clear observation of turbulent kinetic energy and eddy viscosity showed that near-wall turbulence over the critical wall roughness increases the momentum transfer, and consequently the head developed by pump increases.
Volume
41
Subjects
  • Electric submersible ...

  • Off-design condition

  • Surface roughness

  • Wall-bounded turbulen...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback