Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Robust modelling of implicit interfaces by the scaled boundary finite element method
 
  • Details
Options

Robust modelling of implicit interfaces by the scaled boundary finite element method

Date Issued
01-03-2021
Author(s)
Dsouza, Shaima M.
Pramod, A. L.N.
Ooi, Ean Tat
Song, Chongmin
Sundararajan Natarajan 
Indian Institute of Technology, Madras
DOI
10.1016/j.enganabound.2020.12.025
Abstract
In this paper, we propose a robust framework based on the scaled boundary finite element method to model implicit interfaces in two-dimensional differential equations in nonhomegeneous media. The salient features of the proposed work are: (a) interfaces can be implicitly defined and need not conform to the background mesh; (b) Dirichlet boundary conditions can be imposed directly along the interface; (c) does not require special numerical integration technique to compute the bilinear and the linear forms and (d) can work with an efficient local mesh refinement using hierarchical background meshes. Numerical examples involving straight interface, circular interface and moving interface problems are solved to validate the proposed technique. Further, the presented technique is compared with conforming finite element method in terms of accuracy and convergence. From the numerical studies, it is seen that the proposed framework yields solutions whose error is O(h2) in L2 norm and O(h) in the H1 semi-norm. Further the condition number increases with the mesh size similar to the FEM.
Volume
124
Subjects
  • Bi-material interface...

  • Dirichlet boundary co...

  • Material inclusions

  • Scaled boundary finit...

  • Weak discontinuity

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback