Options
Numerical prediction of a laminar boundary layer flow on a rotating sphere
Date Issued
01-01-1984
Author(s)
Raman, V. M.
Abstract
Numerical solutions to a laminar boundary layer flow past a sphere are considered. The solutions are presented using the procedure of Gosman et al. [1] with appropriate modifications. Successful numerical solution procedures have been devised for the solution of flow problems, see [5]. The SOR method is chosen as a method of solution. Although it looks like a simple method, application of such a method to nonlinear Navier-Stokes equations is highly nontrivial. The matrix method is not used because convergence was not a problem for the type of flow considered in this paper. The governing nonlinear differential equations are converted into finite difference equations by integrating the equations over a control volume and are then solved by an iterative procedure. The numerical results predict that the transverse velocity vθ is positive in the upper hemisphere, goes to zero in the equitorial plane and becomes negative in the lower hemisphere. © 1984.
Volume
43