Options
Synthesis and phase stability of precursor derived HfO <inf>2</inf>/Si-C-N-O nanocomposites
Date Issued
01-03-2012
Author(s)
Sujith, Ravindran
Kousaalya, Adhimoolam Bakthavachalam
Indian Institute of Technology, Madras
Abstract
Hafnium alkoxide modified polysilazane was synthesized by the drop-wise addition of hafnium tetra(n-butoxide) to polysilazane. The solid state thermolysis (SST) temperature and the ceramic yield for both the polysilazane and modified polysilazane were determined by performing thermogravimetry. Fourier transform infrared spectroscopy was performed to understand the polymer to ceramic conversion as well as the bonding characteristics of the ceramics. The modified polymer after crosslinking was subjected to SST at 800 °C at a constant heating rate of 5 °C/min for a dwell time of 2 h in atmospheric ambience. From the X-ray diffractograms, the as-thermolysed ceramics were observed to remain X-ray amorphous and on heat-treatment resulted in the crystallization of tetragonal hafnia. However, on heat-treatment at 1500 °C, reverse phase transformation from tetragonal to monoclinic hafnia was observed. Raman spectroscopy and transmission electron microscopy were employed to further understand the phase evolution. The thermal stability and the influence of amorphous matrix on the coarsening of HfO 2 were also evaluated. © 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Volume
38