Options
Rotating-Particle Micropump Inspired by Taylor's Swimming Sheet
Date Issued
02-10-2020
Author(s)
Gokhale, Devashish
Indian Institute of Technology, Madras
Abstract
The development of size-efficient and cost-effective micropumps is an important problem given their wide applications. However, efficient designs are difficult to realise practically due to the complex machining required at small length scales. Here, we use Taylor's swimming sheet as an exemplar to show that the collective behavior of simple constructs like rotating particles can capture much of the rich behavior exhibited by microorganisms, and propose a compact and easy-to-make micropump based on the swimming sheet. We use analytical techniques and dissipative particle dynamics simulations to show that a staggered arrangement of rotating particles can emulate the flow characteristics of the swimming sheet and work as a micropump. Our analytical calculations, based on two approximate approaches, predict the dependence of the flow rate on control parameters.
Volume
14