Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Quantitative estimation of permeability with lattice boltzmann simulations: Representative porous media from composite processing
 
  • Details
Options

Quantitative estimation of permeability with lattice boltzmann simulations: Representative porous media from composite processing

Date Issued
01-01-2005
Author(s)
Abhijit P Deshpande 
Indian Institute of Technology, Madras
Srikanth, A.
Praveen, N.
DOI
10.1002/cjce.5450830502
Abstract
Understanding of the flow of fluids through beds of fibrous media is extremely important for composites processing. In this work, we have investigated a steady flow of a Newtonian fluid through two-dimensional porous media using lattice Boltzmann methods. The porous domains studied in this work represent different types of porous media encountered in composite processing. Initially, the methodology was validated with a simulation of flow through random porous media. Flow through porous media with circular and elliptical inclusions was simulated with different geometric arrangements. Simulations were also carried out with anisotropic porous media. The permeability was estimated as a function of porosity, geometric arrangements and the degree of anisotropy. The simulation results agree well with those from analytical, empirical and experimental studies. The results demonstrate that such a method will be very useful in simulating composite processing.
Volume
83
Subjects
  • Anisotropic

  • Composite

  • Flow

  • Lattice Boltzmann met...

  • Porosity

  • Porous media

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback