Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. ERLP: Ensembles of Reinforcement Learning Policies
 
  • Details
Options

ERLP: Ensembles of Reinforcement Learning Policies

Date Issued
01-01-2020
Author(s)
Saphal, Rohan
Ravindran, Balaraman
Mudigere, Dheevatsa
Avancha, Sasikanth
Kaul, Bharat
Abstract
Reinforcement learning algorithms are sensitive to hyperparameters and require tuning and tweaking for specific environments for improving performance. Ensembles of reinforcement learning models on the other hand are known to be much more robust and stable. However, training multiple models independently on an environment suffers from high sample complexity. We present here a methodology to create multiple models from a single training instance that can be used in an ensemble through directed perturbation of the model parameters at regular intervals. This allows training a single model that converges to several local minima during the optimization process as a result of the perturbation. By saving the model parameters at each such instance, we obtain multiple policies during training that are ensembled during evaluation.We evaluate our approach on challenging discrete and continuous control tasks and also discuss various ensembling strategies. Our framework is substantially sample efficient, computationally inexpensive and is seen to outperform state of the art (SOTA) approaches.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback