Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. Dynamics of a thin film with temperature-dependent viscosity on a rotating disk
 
  • Details
Options

Dynamics of a thin film with temperature-dependent viscosity on a rotating disk

Date Issued
01-09-2005
Author(s)
Usha R 
Indian Institute of Technology, Madras
Ravindran, R.
Uma, B.
DOI
10.1007/s00707-005-0246-y
Abstract
The thermal effects on the dynamics of an axisymmetric flow of a non-volatile incompressible viscous thin liquid film on a rotating disk due to viscosity variation depending exponentially on temperature are considered. The nonlinear evolution equation is solved numerically. The numerical results reveal that heating the film from below enhances the rate of thinning. The increase in Biot number increases the film thickness, when the film is heated from below. Further, the relative amount of fluid retained on the substrate decreases as the film is heated from below. The results are reversed for the case of a film which is cooled from below. The rate of thinning of the film is more (less) for the case of temperature dependent viscosity when the film is heated (cooled) from below than for the case of constant viscosity of the fluid. © Springer-Verlag 2005.
Volume
179
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback