Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication10
  4. An algorithm for discovering the frequent closed itemsets in a large database
 
  • Details
Options

An algorithm for discovering the frequent closed itemsets in a large database

Date Issued
01-12-2006
Author(s)
Singh, Ningthoujam Gourakishwar
Singh, Sanasam Ranbir
Mahanta, Anjana K.
Prasad, Bhanu
DOI
10.1080/09528130600975758
Abstract
Previous research revealed that the problem of discovering a complete set of frequent itemsets from a large database can be reduced to the problem of discovering the frequent closed itemsets, and this process results in a much smaller set of itemsets without information loss. This article is based on the observation that the set of all itemsets can be grouped into non-overlapping clusters such that each cluster is identified by a unique closed tidset. It is also found that there is only one closed itemset in each cluster and it is the superset of all itemsets with the same support. Therefore, the problem of discovering closed itemsets can be further considered as the problem of clustering the set of itemsets and then identifying each cluster by a unique closed tidset. This article presents CloseMiner, a new algorithm for discovering all frequent closed itemsets by grouping the set of itemsets into non-overlapping clusters. Experimental evaluation based on a number of real and synthetic databases has proved that CloseMiner outperforms the existing systems APRIORI and CHARM. © 2006 Taylor & Francis.
Volume
18
Subjects
  • Closed tidsets

  • Frequent closed items...

  • Lattice

  • Reduced IT-tree

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback