Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Role of Zinc Oxide in the Compounding Formulation on the Growth of Nonstoichiometric Copper Sulfide Nanostructures at the Brass-Rubber Interface
 
  • Details
Options

Role of Zinc Oxide in the Compounding Formulation on the Growth of Nonstoichiometric Copper Sulfide Nanostructures at the Brass-Rubber Interface

Date Issued
22-03-2022
Author(s)
Paulthangam, Kannan Murugesan
Som, Anirban
Ahuja, Tripti
Srikrishnarka, Pillalamarri
Nair, Appukuttan Sreekumaran
Pradeep Thalappil 
Indian Institute of Technology, Madras
DOI
10.1021/acsomega.1c06207
Abstract
Tire technology has evolved substantially by the introduction of brass-coated steel cords (BCSCs) in radial tires. The durability of radial tires is dependent on the integrity of the brass-rubber interface composed predominantly of nonstoichiometric copper sulfide (Cu2-xS, where x = 1 to 2) nanostructures whose morphology and characteristics are dependent upon the crucial rubber additive, ZnO. Its higher concentration impacts environmental sustainability, while at lower levels, there is insufficient bonding between steel and the rubber thus affecting tire's safety. This brings in the need for an optimum ZnO concentration to be used in radial tires and is thus the theme of the present work. The changes in the properties of interfacial nanostructures such as morphology, thickness, crystallinity, and chemical composition were studied at various ZnO concentrations. We adopted our previously reported methodology, the "brass mesh experiment", to investigate the thickness of nanostructures at varied ZnO concentrations using transmission electron microscopy (TEM). Significant results were obtained from field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman imaging and X-ray photoelectron spectroscopy (XPS). In conjunction with a more practical experimental technique, namely the measurement of pull-out force (POF), it has been concluded that 9 parts per hundred rubber (PHR) ZnO is essential for the optimum growth of nanostructures and is considered to be the optimum for the composition studied. We believe that the scientific approach outlined in the manuscript would help the tire- and the material science communities to widen the knowledge of understanding sustainability in tire industries. It is estimated that the optimization presented here can save $400-450 million for the tire industry and 2.4 million tons of ZnO per year.
Volume
7
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback