Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster
 
  • Details
Options

Light-Activated Intercluster Conversion of an Atomically Precise Silver Nanocluster

Date Issued
26-10-2021
Author(s)
Jana, Arijit
Jash, Madhuri
Poonia, Ajay Kumar
Paramasivam, Ganesan
Islam, Md Rabiul
Chakraborty, Papri
Antharjanam, Sudhadevi
Machacek, Jan
Sundargopal Ghosh 
Indian Institute of Technology, Madras
Adarsh, Kumaran Nair Valsala Devi
Base, Tomas
Pradeep Thalappil 
Indian Institute of Technology, Madras
DOI
10.1021/acsnano.1c02602
Abstract
Noble metal nanoclusters protected with carboranes, a 12-vertex, nearly icosahedral boron-carbon framework system, have received immense attention due to their different physicochemical properties. We have synthesized ortho-carborane-1,2-dithiol (CBDT) and triphenylphosphine (TPP) coprotected [Ag42(CBDT)15(TPP)4]2- (shortly Ag42) using a ligand-exchange induced structural transformation reaction starting from [Ag18H16(TPP)10]2+ (shortly Ag18). The formation of Ag42 was confirmed using UV-vis absorption spectroscopy, mass spectrometry, transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and multinuclear magnetic resonance spectroscopy. Multiple UV-vis optical absorption features, which exhibit characteristic patterns, confirmed its molecular nature. Ag42 is the highest nuclearity silver nanocluster protected with carboranes reported so far. Although these clusters are thermally stable up to 200 °C in their solid state, light-irradiation of its solutions in dichloromethane results in its structural conversion to [Ag14(CBDT)6(TPP)6] (shortly Ag14). Single crystal X-ray diffraction of Ag14 exhibits Ag8-Ag6 core-shell structure of this nanocluster. Other spectroscopic and microscopic studies also confirm the formation of Ag14. Time-dependent mass spectrometry revealed that this light-activated intercluster conversion went through two sets of intermediate clusters. The first set of intermediates, [Ag37(CBDT)12(TPP)4]3- and [Ag35(CBDT)8(TPP)4]2- were formed after 8 h of light irradiation, and the second set comprised of [Ag30(CBDT)8(TPP)4]2-, [Ag26(CBDT)11(TPP)4]2-, and [Ag26(CBDT)7(TPP)7]2- were formed after 16 h of irradiation. After 24 h, the conversion to Ag14 was complete. Density functional theory calculations reveal that the kernel-centered excited state molecular orbitals of Ag42 are responsible for light-activated transformation. Interestingly, Ag42 showed near-infrared emission at 980 nm (1.26 eV) with a lifetime of >1.5 μs, indicating phosphorescence, while Ag14 shows red luminescence at 626 nm (1.98 eV) with a lifetime of 550 ps, indicating fluorescence. Femtosecond and nanosecond transient absorption showed the transitions between their electronic energy levels and associated carrier dynamics. Formation of the stable excited states of Ag42 is shown to be responsible for the core transformation.
Volume
15
Subjects
  • carboranes

  • intercluster conversi...

  • luminescence

  • near-infrared emissio...

  • silver nanoclusters

  • ultrafast electron dy...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback