Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. A U-bent fiberoptic absorbance biosensor array (ArFAB) for multiplexed analyte detection
 
  • Details
Options

A U-bent fiberoptic absorbance biosensor array (ArFAB) for multiplexed analyte detection

Date Issued
01-12-2022
Author(s)
Kuzhandai Shamlee, J.
Swamy, V. V.L.
S Rajamani, Allwyn
Mukherji, Soumyo
Satija, Jitendra
Vani Janakiraman 
Indian Institute of Technology, Madras
Raghavendra Sai V V 
Indian Institute of Technology, Madras
DOI
10.1016/j.biosx.2022.100271
Abstract
Compact and dip-type U-bent fiber optic sensor (U-FOS) probes exhibit remarkably high evanescent wave absorbance (EWA) sensitivity and are highly suitable for label-free multiplexed detection of proteins, virii and bacteria by exploiting their intrinsic optical absorption property in the UV region. Here, we show the design and development of a novel EWA based eight-channel array fiber optic absorbance biosensor (ArFAB) using U-FOS probes for multi-analyte detection or multi-sample analysis in real-time. A proof-of-concept ArFAB is designed to consist of a UV LED (λmax = 285 nm) and a highly sensitive CMOS linear image sensor coupled to a sensor probe module through fan-out (1-to-8) and parallel (8 nos) fiber bundles respectively. The sensor probe module is designed to hold and efficiently couple the light to/from 8 U-FOS probes with the help of ceramic ferrules and mating sleeves. The CMOS line sensor, with 8 coupling fibers equidistantly placed along its length, distinctly quantifies the intensity response from each of the eight U-FOS probes. The ArFAB was systematically validated for reproducible optical intensity measurements and label-free multiplexed detection of proteins and bacteria was realized. Moreover, a novel sandwich immunoassay with plasmonic labels for immunoglobulin G (IgG) with picomolar analyte detection limits at 280 nm wavelength is demonstrated. With mass-producible U-FOS probes and a low-cost optoelectronic instrumentation that can be easily customized for LSPR or any other sensing phenomenon, the ArFAB is highly promising for cost-effective biomolecular interactions, and cell analyses and clinical diagnostic applications.
Volume
12
Subjects
  • Array biosensor

  • Evanescent wave absor...

  • Label-free sensing

  • Labeled sensing

  • U-bent fiber optic se...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback