Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication4
  4. A new variant of Arnoldi method for approximation of eigenpairs
 
  • Details
Options

A new variant of Arnoldi method for approximation of eigenpairs

Date Issued
15-12-2018
Author(s)
Ravibabu, Mashetti
Singh, Arindama 
Indian Institute of Technology, Madras
DOI
10.1016/j.cam.2018.05.047
Abstract
Arnoldi method approximates exterior eigenvalues of a large sparse matrix, but may fail to approximate corresponding eigenvectors. The refined Arnoldi method approximates an eigenpair by solving a related singular value problem. In this paper, we propose a new procedure to extract an approximate eigenpair from a Krylov subspace in Arnoldi method, using a minimization problem. Unlike the refined Arnoldi method, the suggested procedure requires solving a linear system.
Volume
344
Subjects
  • Arnoldi method

  • Eigenvalues and eigen...

  • Refined Arnoldi metho...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback