Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Non-cooperative spectrum access the dedicated vs. free spectrum choice
 
  • Details
Options

Non-cooperative spectrum access the dedicated vs. free spectrum choice

Date Issued
04-12-2012
Author(s)
Krishna Jagannathan 
Indian Institute of Technology, Madras
Menache, Ishai
Modiano, Eytan
Zussman, Gil
DOI
10.1109/JSAC.2012.121217
Abstract
We consider a dynamic spectrum access system in which Secondary Users (SUs) choose to either acquire dedicated spectrum or to use spectrum-holes (white spaces) which belong to Primary Users (PUs). The trade-off incorporated in this decision is between immediate yet costly transmission and free but delayed transmission (a consequence of both the possible appearance of PUs and sharing the spectrum holes with multiple SUs). We first consider a system with a single PU band, in which the SU decisions are fixed. Employing queueing-theoretic methods, we obtain explicit expressions for the expected delays associated with using the PU band. Based on that, we then consider self-interested SUs and study the interaction between them as a non-cooperative game. We prove the existence and uniqueness of a symmetric Nash equilibrium, and characterize the equilibrium behavior explicitly. Using our equilibrium results, we show how to maximize revenue from renting dedicated bands to SUs and briefly discuss the extension of our model to multiple PUs. Finally, since spectrum sensing can be resourceconsuming, we characterize the gains provided by this capability. © 1983-2012 IEEE.
Volume
30
Subjects
  • cognitive radio

  • decisions in queues

  • dynamic spectrum acce...

  • game theory

  • Queueing theory

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback