Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication11
  4. An enhanced evolutionary approach to spatial partitioning for reconfigurable environments
 
  • Details
Options

An enhanced evolutionary approach to spatial partitioning for reconfigurable environments

Date Issued
01-01-2003
Author(s)
Pratibha, P.
Borra, Siva Nageswara Rao
Muthukaruppan, A.
Suresh, S.
Veezhinathan Kamakoti 
Indian Institute of Technology, Madras
DOI
10.1109/CEC.2003.1299879
Abstract
This paper introduces a novel parallel evolutionary methodology making use of ANN for solving the spatial partitioning problem for multi-FPGA (field programmable gate arrays) architectures. The algorithm takes as input a HDL (hardware description language) model of the application along with user specified constraints and automatically generates a task graph G; partitions G based on the user specified constraints and maps the blocks of the partitions onto the different FPGAs in the given multi-FPGA architecture, all in a single-shot. The proposed algorithm was successfully employed to spatially partition a reasonably big cryptographic application that involved a 1024-bit modular exponentiation and to map the same onto a network of nine ACEX1K based Altera EP1K30QC208-1 FPGAs. The suggested parallel evolutionary algorithm for the partitioning step was implemented on a 6-node SGI Origin-2000 platform using the message passing interface (MPI) standard. The results obtained by executing the same are extremely encouraging, especially for larger task graphs. © 2003 IEEE.
Volume
3
Subjects
  • ANN

  • Evolutionary Algorith...

  • Feed forward networks...

  • FPGA

  • Message Passing Inter...

  • Parallel Computing

  • Pattern mapping

  • Spatial Partitioning

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback