Options
Localized Effects Due to Aerodynamic Modifications in Buildings: A State-of-Art Review
Date Issued
01-01-2020
Author(s)
Powar, Omkar
Jayachandran, Arul
Abstract
Assuring least spatial correlations is one of the basic principles for avoiding detrimental wind effects on high-rise structures. This is usually ensured in buildings by adopting aerodynamic modifications, which avoids peaking of the wind effects over different locations at the same instant of time, thereby reducing the wind load on the structure. There are many studies performed to quantify this aspect, but in most of these investigations, overall effects (like along-wind and across-wind overturning moment, power spectral densities and trajectories of various wind force coefficients) are focused, whereas the localized effects (like peak surface pressures) are generally not dealt in detail. In today’s urban landscapes where the use of glass in building envelopes is very common, understanding the behavior of localized peak pressure distribution over building surface is of prime importance. Detailed quantification of these peak pressures is a pivotal issue for safe and economical designing of the glass envelopes. This paper provides a holistic review of existing literature based on both (a) wind tunnel tests and (b) computational fluid dynamic (CFD) analysis in the domain of aerodynamic modifications of high-rise buildings. The present paper highlights the typical limitation observed in most of these investigations wherein one member from each geometric modification family (like chamfering, recession or corner roundness) is compared with a member from other. Such investigation, although provide some qualitative information, are insufficient to address the practical issue of optimization faced by façade designer. The present paper establishes the need for benchmark studies, which encompasses all practically possible types of aerodynamic modifications that can be adopted in tall buildings. The paper also comprehensively presents a quantitative assessment of localized effects of wind on structural façades.