Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Testing Weibull as a viable statistical strength distribution for Nacre
 
  • Details
Options

Testing Weibull as a viable statistical strength distribution for Nacre

Date Issued
01-07-2021
Author(s)
Muthukaruppan, Arunachalam
Manoj Pandey 
Indian Institute of Technology, Madras
Rajagopal, Amirtham
DOI
10.1016/j.mechmat.2021.103855
Abstract
Nacre, a composite layer present in sea-shells, exhibits a remarkable combination of toughness, strength, and stiffness through its brick–mortar micro-structure, acting as a template for novel materials. Strength, one of nacre's important properties is highly variable due to distribution of underlying material's properties as well as various defects present in its micro-structure. Presently, researchers assume the Weakest-link hypothesis and consequently use the Weibull distribution to model this variability. However, this assumption is theoretically unproven for biological materials such as Nacre and extrapolation of the same to predict rare but catastrophic behavior would be incorrect. In this article, the suitability of Weibull distribution to account for the variability of strength in nacre is tested, using multi-scale models, developed using FEM. Through Monte Carlo based numerical experiments and Renormalization Group (RG) based arguments, it is shown that the Weakest-link hypothesis, which is commonly used to justify the use of the Weibull distribution, does not seem to hold for nacre. Micromechanics and non-local homogenization based distributions such as the one suggested by Luo and Bazant (2019) might be more appropriate for accurate extrapolation to the low probability tail.
Volume
158
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback