Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication12
  4. Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel
 
  • Details
Options

Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel

Date Issued
01-01-1991
Author(s)
Srinivasan, V. S.
Sandhya, R.
Bhanu Sankara Rao, K.
Mannan, S. L.
Raghavan, K. S.
DOI
10.1016/0142-1123(91)90482-E
Abstract
Strain-controlled low cycle fatigue tests have been conducted in air between 298-873 K to ascertain the influence of temperature on LCF behaviour of nitrogen-alloyed type 316L stainless steel. A strain amplitude of ± 0.60% and a symmetrical triangular waveform at a constant strain rate of 3 × 10-3 s-1 were employed for all tests. Crack initiation and propagation modes were evaluated, and the deformation and damage mechanisms which influence the cyclic stress response and fatigue life identified. The cyclic stress response at all temperatures was characterized by an initial hardening to the maximum stress, followed by gradual softening prior to attaining saturation. Temperature dependence of fatigue life showed a maximum in the intermediate temperature range. The drastic reduction in fatigue life at elevated temperatures has been ascribed primarily to the combined influence of dynamic strain ageing effects and oxidation-enhanced crack initiation, while the lower life at room temperature is attributed to detrimental effects associated with deformation-induced martensite. © 1991.
Volume
13
Subjects
  • 316L stainless steel

  • deformation

  • dynamic strain ageing...

  • fracture

  • low cycle fatigue

  • temperature effects

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback