Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
 
  • Details
Options

Uncertainty handling for Electric Vehicle aggregator using IGDT

Date Issued
01-12-2018
Author(s)
Pradhan, Jitendra Kumar
Verma, Pranjal Pragya
Khemka, Vinit
Anoop, V. E.
Srinivas, S. T.P.
Swarup, K. S. 
Indian Institute of Technology, Madras
DOI
10.1109/NPSC.2018.8771745
Abstract
Electric vehicles are an integral part of futuristic smart grids. Electric vehicles give rise to a new player in the retail market called as aggregator. This paper proposes an intelligent charging scheduling problem for an Electric Vehicle (EV) aggregator considering vehicle-to-grid (V2G) and grid-to-vehicle (G2V) capabilities with an objective to minimize the total charging cost. Since electricity price at the charging node may be subject to uncertainties, Information Gap Decision Theory (IGDT) is proposed in this paper to handle uncertainties in the price. The original intelligent charging scheduling problem is non-linear. The paper proposes a modified Mixed Integer Linear Programming (MILP) based reformulation and solves with CPLEX using GAMS as an aggregator.
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback