Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Analysis of frequency bands of uterine electromyography signals for the detection of preterm birth
 
  • Details
Options

Analysis of frequency bands of uterine electromyography signals for the detection of preterm birth

Date Issued
01-07-2021
Author(s)
Selvaraju, Vinothini
Karthick, P. A.
Ramakrishnan Swaminathan 
Indian Institute of Technology, Madras
DOI
10.3233/SHTI210165
Abstract
In this work, an attempt has been made to analyze the influence of the frequencies bands in uterine electromyography (uEMG) signals on the detection of preterm birth. The signals recorded from the women's abdomen during pregnancy are considered in this study. The signals are subjected to preprocessing using digital bandpass Butterworth filter and decomposed into different frequency bands namely, 0.3-1.0 Hz (F1), 1.0-2.0 Hz (F2) and 2.0-3.0Hz (F3). Spectral features namely, peak magnitude, peak frequency, mean frequency and median frequency are extracted from the power spectrum. Classification models namely, k-nearest neighbor, support vector machine and random forest are employed to distinguish the term and preterm conditions. The results show that the features extracted from these frequency bands are able to differentiate term and preterm condition. Particularly, the frequency band F3 performs better than other frequency bands. The features associated with these frequencies along with random forest classification model achieves a maximum accuracy of 75.2%. Thus, these measures could be used to accurately detect the preterm birth well in advance. © 2021 European Federation for Medical Informatics (EFMI) and IOS Press.
Subjects
  • Preterm

  • Spectral features

  • Term

  • Uterine Electromyogra...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback