Options
Uncertainty Quantification of Subcritical Nonlinear Aeroelastic System Using Integrated Interpolation Method and Polynomial Chaos Expansion
Date Issued
01-01-2016
Author(s)
Thanusha, M. T.
Indian Institute of Technology, Madras
Abstract
The present paper is about analyzing and quantifying parametric uncertainties in a nonlinear aeroelastic system. The response surface of a subcritical system has discontinuities which makes it difficult to analyze using spectral approaches. A quadrature based spectral parametric uncertainty tool called nonintrusive spectral projection (NISP) can capture discontinuities in the response surface only by infinite number of points. As the number of random variable increases, the order of expansion has to increase drastically in order to capture the response accurately. Hence an alternate approach using integrated interpolation scheme which was earlier applied for a thermoacoustic problem is being applied to a classical flutter problem. It is found to be accurate and computationally cheaper than traditional Monte Carlo simulations (MCS) in capturing the response surface. This paper intends to apply the interpolation scheme to the nonlinear aeroelastic model and compares it with quadrature based polynomial chaos expansion (PCE) approach and MCS.
Volume
144