Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. On the use of shape constraints for state estimation in reaction systems
 
  • Details
Options

On the use of shape constraints for state estimation in reaction systems

Date Issued
01-01-2016
Author(s)
Srinivasan, Sriniketh
Darsha Kumar, D. M.
Billeter, Julien
Shankar Narasimhan S 
Indian Institute of Technology, Madras
Bonvin, Dominique
DOI
10.1016/j.ifacol.2016.07.219
Abstract
State estimation techniques are used for improving the quality of measured signals and for reconstructing unmeasured quantities. In chemical reaction systems, nonlinear estimators are often used to improve the quality of estimated concentrations. These nonlinear estimators, which include the extended Kalman filter, the receding-horizon nonlinear Kalman filter and the moving-horizon estimator, use a state-space representation in terms of concentrations. An alternative to the representation of chemical reaction systems in terms of concentrations consists in representing these systems in terms of extents. This paper formulates the state estimation problem in terms of extents, which allows imposing additional shape constraints on the sign, monotonicity and concavity/convexity properties of extents. The addition of shape constraints often leads to significantly improved state estimates. A simulated example illustrates the formulation of the state estimation problem in terms of concentrations and extents, and the use of shape constraints.
Volume
49
Subjects
  • receding-horizon nonl...

  • shape constraints

  • State estimation

  • vessel extents

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback