Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. The thickness of 18-MEA on an ultra-high-sulfur protein surface by molecular modeling
 
  • Details
Options

The thickness of 18-MEA on an ultra-high-sulfur protein surface by molecular modeling

Date Issued
01-11-2010
Author(s)
Upendra Natarajan 
Indian Institute of Technology, Madras
Robbins, Clarence
Abstract
The use of computational chemistry techniques via molecular modeling software provides additional support to the hair surface model by Negri et al. (1) and refines the thickness of the 18-methyl eicosanoic acid (18-MEA) lipid layer attached by thioester linkages to an ultra-high-sulfur protein (UHSP) at 1.08 ± 0.2 nm. This value compares favorably to the thickness of that same layer from X-ray photoelectron spectroscopy (XPS) measurements by Ward et al. (2) at 1.00 ± 0.5 nm on Soxhlet-extracted wool. The model clarifies that the results of Ward et al. via XPS are not an artifact of high vacuum (3), but due to relaxation of the 18-MEA structure onto the wool protein backbone as suggested by Zahn et al. (4). In this molecular model, 18-MEA is attached to beta sheets of an UHSP via thioester linkages as suggested by Negri et al. in their 1993 study (15) and by earlier work by Evans et al. (5). The beta sheets of this model provide an intersheet spacing of 0.7 nm and a beta sheet density of 1.42 g/cm3 compared with Allworden membrane fractions that varied from 1.39 to 1.54 g/cm3(6).
Volume
61
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback