Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
 
  • Details
Options

A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

Date Issued
01-12-2020
Author(s)
Sirunyan, A. M.
Tumasyan, A.
Adam, W.
Ambrogi, F.
Bergauer, T.
Dragicevic, M.
Erö, J.
Valle, A. Escalante Del
Flechl, M.
Frühwirth, R.
Jeitler, M.
Krammer, N.
Krätschmer, I.
Liko, D.
Madlener, T.
Mikulec, I.
Rad, N.
Schieck, J.
Schöfbeck, R.
Spanring, M.
Spitzbart, D.
Waltenberger, W.
Wulz, C. E.
Zarucki, M.
Drugakov, V.
Mossolov, V.
Gonzalez, J. Suarez
Darwish, M. R.
De Wolf, E. A.
Croce, D. Di
Janssen, X.
Lelek, A.
Pieters, M.
Sfar, H. Rejeb
Haevermaet, H. Van
Mechelen, P. Van
Putte, S. Van
Remortel, N. Van
Blekman, F.
Bols, E. S.
Chhibra, S. S.
D’Hondt, J.
De Clercq, J.
Lontkovskyi, D.
Lowette, S.
Marchesini, I.
Moortgat, S.
Python, Q.
Skovpen, K.
Tavernier, S.
Doninck, W. Van
Mulders, P. Van
Beghin, D.
Bilin, B.
Clerbaux, B.
De Lentdecker, G.
Delannoy, H.
Dorney, B.
Favart, L.
Grebenyuk, A.
Kalsi, A. K.
Popov, A.
Postiau, N.
Starling, E.
Thomas, L.
Velde, C. Vander
Vanlaer, P.
Vannerom, D.
Cornelis, T.
Dobur, D.
Khvastunov, I.
Niedziela, M.
Roskas, C.
Tytgat, M.
Verbeke, W.
Vermassen, B.
Vit, M.
Bondu, O.
Bruno, G.
Caputo, C.
David, P.
Delaere, C.
Delcourt, M.
Giammanco, A.
Lemaitre, V.
Prisciandaro, J.
Saggio, A.
Marono, M. Vidal
Vischia, P.
Zobec, J.
Alves, F. L.
Alves, G. A.
Silva, G. Correia
Hensel, C.
Moraes, A.
Teles, P. Rebello
Chagas, E. Belchior Batista Das
Carvalho, W.
Chinellato, J.
Coelho, E.
DOI
10.1007/s41781-020-00041-z
Abstract
We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯.
Volume
4
Subjects
  • b jets

  • CMS

  • Deep learning

  • Higgs boson

  • Jet energy

  • Jet resolution

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback