Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. An 800MHz-BW VCO-Based Continuous-Time Pipelined ADC with Inherent Anti-Aliasing and On-Chip Digital Reconstruction Filter
 
  • Details
Options

An 800MHz-BW VCO-Based Continuous-Time Pipelined ADC with Inherent Anti-Aliasing and On-Chip Digital Reconstruction Filter

Date Issued
01-02-2020
Author(s)
Shibata, Hajime
Taylor, Gerry
Schell, Bob
Kozlov, Victor
Patil, Sharvil
Paterson, Donald
Ganesan, Asha
Dong, Yunzhi
Yang, Wenhua
Yin, Yue
Li, Zhao
Shrestha, Prawal
Gopal, Athreya
Bhat, Aathreya
Pavan, Shanthi
DOI
10.1109/ISSCC19947.2020.9062917
Abstract
Modern wireless communication systems operating at tens of GHz have opened a near-GHz contiguous RF BW for various applications. Further, spectral efficiency has often necessitated such applications to use MIMO and beamforming, resulting in systems that are highly integrated and require tight power budgets. The ADC, being an indispensable element of these systems, has been thus pushed to digitize ever-increasing BWs (>500MHz) with low power dissipation and area, in an integration-friendly manner. Continuous-time (CT) ΔΣ ADCs have traditionally been used in integrated receiver applications because their oversampling and inherent anti-aliasing ease the frequency planning and make on-chip active filtering possible. Designing these CT ΔΣ ADCs for BW specifications of more than 500MHz, however, is challenging. Digitizing near-GHz RF BW with a typical oversampling ratio (OSR) of 16 requires a very high sampling frequency with prohibitive power dissipation even in advanced process nodes. Using discrete-time (DT) ADCs is a possibility, but the ADC will still need to be oversampled to ease on-chip filtering and to prevent unwanted mixer terms from aliasing in-band. Thus, the power consumption and area penalties can be prohibitive.
Volume
2020-February
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback