Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase
 
  • Details
Options

Design, synthesis and identification of novel substituted 2-amino thiazole analogues as potential anti-inflammatory agents targeting 5-lipoxygenase

Date Issued
05-10-2018
Author(s)
Sinha, Shweta
Doble, Mukesh 
Indian Institute of Technology, Madras
Manju, S. L.
DOI
10.1016/j.ejmech.2018.08.098
Abstract
Human 5-Lipoxygenase (5-LOX) is a key enzyme targeted for asthma and inflammation. Zileuton, the only drug against 5-LOX, was withdrawn from the market due to several problems. In the present study, the performance of rationally designed conjugates of thiazole (2) and thiourea (3) scaffolds from our previously reported 2-amino-4-aryl thiazole (1) is reported. They are synthesized (total 31 derivatives), characterized, and tested against the 5-LOX enzyme in vitro and the mode of action of the most active ones are determined. Compound 2m exhibited an IC50 of 0.9 ± 0.1 μM acting through competitive (non-redox) mechanism, unlike Zileuton, and found to be devoid of radical scavenging properties. Computational studies are in good agreement with the experimental data supporting its mechanism of action. Another lead molecule from the thiourea series (3), 3f, exhibited an IC50 of 1.4 ± 0.1 μM against 5-LOX whose mode of action is redox type (non-competitive). It is promising to note that the activities displayed by both the lead inhibitors, 2m and 3f, are better than the commercial drug, Zileuton (IC50 = 1.5 ± 0.3 μM). These inhibitors could be further developed as drugs against inflammation.
Volume
158
Subjects
  • 5-Lipoxygenase

  • Design

  • Inflammation

  • Pharmacophore/docking...

  • Thiazoles

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback