Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Utilization of Sulfonated Waste Polystyrene-Based Cobalt Ferrite Magnetic Nanocomposites for Efficient Degradation of Calcon Dye
 
  • Details
Options

Utilization of Sulfonated Waste Polystyrene-Based Cobalt Ferrite Magnetic Nanocomposites for Efficient Degradation of Calcon Dye

Date Issued
01-07-2022
Author(s)
Srinivasan, Vennila
Sumalatha, Vasam
Prasannan, Adhimoorthy
Govindarajan, Sankar
DOI
10.3390/polym14142909
Abstract
We presented a simple and efficient method for making a polymer–metal nanocomposite using various amounts of cobalt ferrite magnetic nanoparticles (CoFe2O4 MNp) with sulfonated waste polystyrene (SWPS) and utilized for Calcon dye degradation. The MNp was encapsulated with SWPS to avoid agglomeration and maintain its smaller size. ATR-FTIR, Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), high-resolution transmittance electron microscopy (HR-TEM), atomic force microscopy (AFM) and solid UV were used to analyze the produced polymeric magnetic nanoparticles (SWPS/MNp). As the MNp loading increases, the average particle size decreases. For Calcon dye degradation, SWPS/MNp (20 wt%) was utilized with a smaller average particle size, and the structural changes were detected using a UV-Vis spectrophotometer. As a result, the Calcon dye’s characteristic absorbance peak at 515 nm was red-shifted to 536 and 565 nm after 5 min, resulting in a color shift from dark brown to light blue that could be seen with the naked eye. A strong linear correlation was found between the red-shifted absorbance and the concentration of dye solution over the range of 10–100 ppm under optimal conditions. The proposed dye degradation process is simple, efficient, and environmentally friendly and has been successfully used to purify organic azo-dye-containing water.
Volume
14
Subjects
  • Calcon dye

  • cobalt ferrite

  • dye degradation

  • polymeric magnetic na...

  • sulfonated waste poly...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback