Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication9
  4. Self-organised maps for online detection of faults in non-linear industrial processes
 
  • Details
Options

Self-organised maps for online detection of faults in non-linear industrial processes

Date Issued
01-01-2010
Author(s)
Jeevan, M.
Babji Srinivasan 
Indian Institute of Technology, Madras
Arun K Tangirala 
Indian Institute of Technology, Madras
DOI
10.1504/IJAAC.2010.033514
Abstract
Fault detection in linear systems is a fairly matured area where the well-known principal component analysis (PCA) and its variants are widely used. However, a large class of non-linear systems exist, especially chemical processes, on which such techniques cannot be applied. The present work aims at demonstrating the application of self-organising maps (SOM) for fault detection in non-linear processes. SOM belongs to the class of unsupervised and competitive learning algorithms and it is highly capable of handling nonlinear relationships. Application of SOM to fault detection involves generation of a reference template for the process under fault-free conditions. Online fault detection is performed by generating a new template using a windowing of the data, which is compared with the reference template using a novel metric based on the node weights obtained from SOM to detect possible faults in the process. Simulation studies on two non-linear systems, namely, (1) continuously stirred tank reactor (CSTR) and (2) bioreactor process demonstrate the practicality and utility of the proposed method. © 2010 Inderscience Enterprises Ltd.
Volume
4
Subjects
  • Fault detection

  • Non-linear systems

  • PCA

  • Principal component a...

  • Self-organising maps

  • SOM

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback