Options
A C<sup>1</sup>-Rational Cubic Fractal Interpolation Function: Convergence and Associated Parameter Identification Problem
Date Issued
01-04-2015
Author(s)
Viswanathan, P.
Indian Institute of Technology, Madras
Abstract
This paper introduces a rational Fractal Interpolation Function (FIF), in the sense that it is obtained using a rational cubic spline transformation involving two shape parameters, and investigates its applicability in some constrained interpolation problems. We identify suitable values for the parameters of the corresponding Iterated Function System (IFS) so that it generates positive rational FIFs for a given set of positive data. Further, the problem of identifying the rational IFS parameters so as to ensure that its attractor (graph of the corresponding rational FIF) lies in a specified rectangle is also addressed. With the assumption that the data defining function is continuously differentiable, an upper bound for the interpolation error (with respect to the uniform norm) for the rational FIF is obtained. As a consequence, the uniform convergence of the rational FIF to the original function as the norm of the partition tends to zero is proven.
Volume
136