Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. A unified framework for bi(tri)connectivity and chordal augmentation
 
  • Details
Options

A unified framework for bi(tri)connectivity and chordal augmentation

Date Issued
01-01-2013
Author(s)
N S Narayanaswamy 
Indian Institute of Technology, Madras
Sadagopan, N.
DOI
10.1142/S0129054113400054
Abstract
For a connected non-complete graph, a vertex separator is a subset of vertices whose deletion increases the number of connected components and the vertex connectivity of the graph refers to the size of a minimum vertex separator. A graph with the vertex connectivity k is said to be k-vertex connected. Given a k-vertex connected graph G, vertex connectivity augmentation determines a smallest set of edges whose augmentation to G makes it (k + 1)-vertex connected. In this paper, we report our study on connectivity augmentation in 1-connected graphs, 2-connected graphs, and k-connected chordal graphs. We first represent the graph under consideration using a "tree-like" graph. This tree is unique and explicitly captures the connectivity information of the graph. Using this tree, our proposed data structure maintains the set of equivalence classes based on an equivalence relation on the set of leaves of the tree. This partition determines a set of edges to be augmented to increase the connectivity of the graph by one. Based on our data structure, we present a new combinatorial analysis and an elegant proof of correctness of our linear-time algorithm for an optimum connectivity augmentation. The novelty is in the data structure which is a unified framework for all three augmentations. As far as the run-time analysis is concerned, given the associated tree, our approach yields an augmentation set in linear time. © 2013 World Scientific Publishing Company.
Volume
24
Subjects
  • Biconnectivity augmen...

  • Chordal augmentation

  • Triconnectivity augme...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback