Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication6
  4. NiCo<inf>2</inf>O<inf>4</inf> hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation
 
  • Details
Options

NiCo<inf>2</inf>O<inf>4</inf> hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation

Date Issued
20-09-2016
Author(s)
Umeshbabu, Ediga
Ranga Rao, G.
DOI
10.1016/j.electacta.2016.07.161
Abstract
We have synthesized highly active NiCo2O4-reduced graphene oxide (NiCo2O4- rGO) hybrid material as non-precious bi-functional electrocatalyst for effective oxidation of methanol and water. The hexagonal nanoplates of NiCo2O4 are grown on rGO sheets by two-step solution phase method. The physiochemical properties of NiCo2O4-rGO hybrid composite have been evaluated by powder X-ray diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and nitrogen sorption measurements. The electrocatalytic activity for methanol and water oxidation on NiCo2O4-rGO, NiCo2O4 and rGO electrodes is tested under alkaline conditions. Results show that the NiCo2O4-rGO hybrid shows higher methanol oxidation peak current density of 16.6 mA cm−2 and lower onset potential (∼256 mV) in methanol oxidation. Likewise, in water oxidation it shows earlier onset overpotential (∼300 mV) and high current density (∼75 mA cm−2) as well as smaller overpotential of ∼390 mV is required to reach a current density of 10 mA cm−2. In addition, the hybrid NiCo2O4-rGO electrode shows excellent catalytic stability in both methanol and water oxidation reactions. The improved electrocatalytic activity of NiCo2O4-rGO is attributed to resilient synergistic effects between NiCo2O4 and rGO sheets.
Volume
213
Subjects
  • Electrocatalysis

  • Hexagonal nanoplates

  • Methanol oxidation

  • NiCo O -rGO hybrid 2 ...

  • Water oxidation

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback