Options
A comparative study of the performance of the mixed flow and radial flow variable geometry turbines for an automotive turbocharger
Date Issued
01-04-2019
Author(s)
Ramesh, K.
Prasad, B. V.S.S.S.
Sridhara, K.
Abstract
A new design of a mixed flow variable geometry turbine is developed for the turbocharger used in diesel engines having the cylinder capacity from 1.0 to 1.5 L. An equivalent size radial flow variable geometry turbine is considered as the reference for the purpose of bench-marking. For both the radial and mixed flow turbines, turbocharger components are manufactured and a test rig is developed with them to carry out performance analysis. Steady-state turbine experiments are conducted with various openings of the nozzle vanes, turbine speeds, and expansion ratios. Typical performance parameters like turbine mass flow parameter, combined turbine efficiency, velocity ratio, and specific speed are compared for both mixed flow variable geometry turbine and radial flow variable geometry turbine. The typical value of combined turbine efficiency (defined as the product of isentropic efficiency and the mechanical efficiency) of the mixed flow variable geometry turbine is found to be about 25% higher than the radial flow variable geometry turbine at the same mass flow parameter of 1425 kg/s √K/bar m 2 at an expansion ratio of 1.5. The velocity ratios at which the maximum combined turbine efficiency occurs are 0.78 and 0.825 for the mixed flow variable geometry turbine and radial flow variable geometry turbine, respectively. The values of turbine specific speed for the mixed flow variable geometry turbine and radial flow variable geometry turbine respectively are 0.88 and 0.73.
Volume
233