Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication8
  4. Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal
 
  • Details
Options

Feasibility of using ultrasound-assisted process for sulfur and ash removal from coal

Date Issued
01-03-2011
Author(s)
Ambedkar, B.
Chintala, T. N.
R Nagarajan 
Indian Institute of Technology, Madras
Sreenivas Jayanti 
Indian Institute of Technology, Madras
DOI
10.1016/j.cep.2011.02.008
Abstract
The present work investigates utilization of ultrasound in reagent-based coal de-ashing and de-sulfurization. The coal under study was received from Girald mine, Rajasthan, India. Three different ultrasonic frequencies (25kHz, Dual (58/192kHz) and 430kHz) and three reagents (HCl, HNO3 and H2O2) were used. The study employed a Taguchi fractional-factorial L27 DOE. Experimental data were used to derive an empirical model for the prediction of total sulfur removal. The model incorporates cavitational intensity, reagent concentration, sonication time, coal particle size and coal concentration as key parameters. Effects of above factors on reagent-based ultrasonic coal-desulfurization are presented here. An optimum set of process parameters are identified and validated. Larger-scale trial with high-ash and high-sulfur coals is strongly recommended. © 2011 Elsevier B.V.
Volume
50
Subjects
  • Acoustic cavitation

  • Acoustic streaming

  • De-sulfurization

  • Micro-jets

  • Micro-streaming

  • Ultrasonic coal-wash

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback