Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication5
  4. Sulfonated graphene oxide-decorated block copolymer as a proton-exchange membrane: Improving the ion selectivity for all-vanadium redox flow batteries
 
  • Details
Options

Sulfonated graphene oxide-decorated block copolymer as a proton-exchange membrane: Improving the ion selectivity for all-vanadium redox flow batteries

Date Issued
01-01-2018
Author(s)
Aziz, Md Abdul
Shanmugam, Sangaraju
DOI
10.1039/c8ta06717a
Abstract
We describe the fabrication of a new block copolymer, sulfonated poly(ether ketone sulfone) (SPEKS) decorated with sulfonated graphene oxide (sGO) as a potential proton-exchange composite membrane for all-vanadium redox flow batteries (VRBs). The simple design of the SPEKS/sGO composite membrane offers key advantages in VRBs relative to commercial Nafion® membrane. The SPEKS/sGO composite membrane exhibited significantly lower vanadium ion permeability, which resulted in an excellent ion selectivity (10.2 × 105 S min cm-3) in comparison with the pristine SPEKS (7.9 × 105 S min cm-3) and Nafion-212 (1.8 × 105 S min cm-3) membranes. As a result, the SPEKS/sGO composite membrane exhibited exceptional electrochemical performance in a VRB under a mixed-acid system. Further, the impressive cyclability with negligible capacity decay demonstrated the high chemical stability of the designed composite membrane for long-term operation. In addition, excellent battery performance with a Coulombic efficiency of 99.4% and energy efficiency of 82.5% was obtained for the SPEKS/sGO membrane compared with the Nafion-212 (CE, 89.6% and EE, 75.5%) and the pristine SPEKS (CE, 97.2% and EE, 74.7%) membranes in the VRB at 40 mA cm-2 current density. The VRB assembled with a SPEKS/sGO composite membrane had a lower self-discharge rate, retaining an open circuit voltage of 1.30 V for 395 h in comparison with the Nafion-212 (29 h) and pristine SPEKS (240 h) membranes. Therefore, given its remarkable electrochemical performance and improved chemical stability, the SPEKS/sGO composite membrane has good potential to be explored as a promising alternative for the Nafion® membrane currently extensively used in VRB applications.
Volume
6
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback