Options
Nitric Oxide Oxygenation Reactions of Cobalt-Peroxo and Cobalt- Nitrosyl Complexes
Date Issued
2023
Author(s)
Kulbir
Keerthi, CSA
Beegam, S
Das, S
Bhardwaj, P
Ansari, M
Singh, K
Kumar, P
Abstract
Here, we report a comparative study of nitric oxide oxidation (NOO) reactions of CoIII-peroxo (CoIII-O22-) and Co-nitrosyl ({CoNO}8) complexes bearing the same N4-donor ligand (HMTETA) framework. In this regard, we prepared and characterized two new [(HMTETA)CoIII(O22-)]+ (2, S = 2) and [(HMTETA)Co(NO)]2+ (3, S = 1) complexes from [(HMTETA)CoII(CH3CN)2]2+ (1). Both complexes (2 and 3) are characterized by different spectroscopic measurements, including their DFT-optimized structures. Complex 2 produces CoII-nitrato [(HMTETA)CoII(NO3-)]+ (CoII-NO3-, 4) complex in the presence of NO. In contrast, when 3 reacted with a superoxide (O2 center dot-) anion, it generated CoII-nitrito [(HMTETA)CoII(NO2-)]+ (CoII-NO2-, 5) with O2 evolution. Experiments performed using 18/16O-labeled superoxide (18O2 center dot-/16O2 center dot-) showed that O2 originated from the O2 center dot- anion. Both the NOO reactions are believed to proceed via a presumed peroxynitrite (PN) intermediate. Although we did not get direct spectral evidence for the proposed PN species, the mechanistic investigation using 2,4di-tert-butylphenol indirectly suggests the formation of a PN intermediate. Furthermore, tracking the source of the N-atom in the above NOO reactions using 15N-labeled nitrogen (15NO) revealed N-atoms in 4 (CoII-15NO3-) and 5 (CoII-15NO2-) derived from the 15NO moiety.
Volume
62