Options
Convolutional Elman Jordan Neural Network for Reconstruction and Classification Using Attention Window
Date Issued
01-01-2021
Author(s)
Kumari, Sweta
Aravindakshan, S.
Jain, Umangi
Srinivasa Chakravarthy, V.
Abstract
In deep learning-based visual pattern recognition systems, typically the entire image is presented to the system for recognition. However, the human visual system often scans a large visual object by sequential shifts of attention, which is integrated for visual classification. Even in artificial domains, such sequential integration is particularly useful when the input image is too large. Some previous studies based on Elman and Jordan networks have explored only with fully connected layers using full image as input but not with convolutional layers using attention window as input. To this end, we present a novel recurrent neural network architecture which possesses spatiotemporal memory called Convolutional Elman Jordan Neural Network (CEJNN) to integrate the information by looking at a series of small attentional windows applied over the full image. Two variations of CEJNN with some modifications have been developed for two tasks: reconstruction and classification. The network is trained on 48 K images and tested on 10 K images of MNIST handwritten digit database for both tasks. Our experiment shows that the network captures better correlation of the spatiotemporal information by providing the result with a mean square error (MSE) of 0.012 for reconstruction task and also claiming the classification with 97.62% accuracy on the testing set.
Volume
1189