Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. On harmonic entire mappings II
 
  • Details
Options

On harmonic entire mappings II

Date Issued
01-08-2023
Author(s)
Deng, Hua
Ponnusamy Saminathan 
Indian Institute of Technology, Madras
Qiao, Jinjing
Tian, Yue
DOI
10.1007/s00605-023-01866-7
Abstract
In this paper, we investigate properties of harmonic entire mappings. First, we study lower order of harmonic entire mappings. For a harmonic entire mappings f of order ρ , we also discuss the case ρ= ∞ by introducing the quantities ρ(k) , τ(k) , λ(k) , ω(k) , and also the case ρ= 0 by studying logarithmic order ρl , logarithmic type τl , logarithmic lower order λl , and logarithmic lower type ωl . Secondly, we investigate approximation by harmonic polynomials of harmonic entire mappings. For a real valued continuous function f on [ - 1 , 1 ] , let En(f)=infpn∈πn‖f-pn‖,n=0,1,2,⋯, where the norm is the maximum norm on [ - 1 , 1 ] and πn denotes the class of all harmonic polynomials with real coefficients of degree at most n. It is known that limn→∞En1/n(f)=0 if and only if f is the restriction to [ - 1 , 1 ] of an entire function (cf. [5, Theorem 7, p. 76]). We prove that this result continues to hold for harmonic entire mappings. We also study the relationship of ρ(k) and λ(k) with the rate growth of En1/n(f) and investigate the relationship of ρl , τl , λl , ωl with the asymptotic behaviour of En1/n(f) .
Volume
201
Subjects
  • Approximation

  • Harmonic entire mappi...

  • Lower order

  • Order

  • Type

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback