Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. A semi-infinite edge dislocation model for the proportionality limit stress of metals under high strain rate
 
  • Details
Options

A semi-infinite edge dislocation model for the proportionality limit stress of metals under high strain rate

Date Issued
01-09-2021
Author(s)
Noushad Bin Jamal, M.
Rao, Chebolu Lakshmana
Basaran, Cemal
DOI
10.1007/s00466-020-01959-2
Abstract
Micromechanics of strain rate dependent elastic response, within the proportionality limit in metals is investigated, on the basis of dislocation kinetics. It is postulated that, the strain rate dependence of proportionality limit stress is dominated by inertia of dislocations, over drag controlled mechanisms. Subsequently, kinetic energy of accelerating edge dislocation at its incipient motion, is expressed. The proposed, inertia-dominated model is non dissipative in nature when compared with that of Frank-Read dislocation nucleation-based model and dislocation-drag mechanism-based model at high strain rates. Using Hamiltonian formalism, a new rate dependent slip criterion with corresponding threshold shear stress is derived. Experimental data on FCC samples, Aluminium-1100-0 and Oxygen free Copper; and BCC samples, pure Iron and mild steel, within a benchmark strain rate of 104 s−1, are used to validate the model prediction. Reported theory on dislocation drag controlled model is compared with the proposed inertia-based theory, using published experimental data.
Volume
68
Subjects
  • Dislocation inertia

  • Dislocations

  • High strain rate

  • Rate-dependent materi...

  • Strengthening mechani...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback