Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. MRNet - A Deep Learning Based Multitasking Model for Respiration Rate Estimation in Practical Settings
 
  • Details
Options

MRNet - A Deep Learning Based Multitasking Model for Respiration Rate Estimation in Practical Settings

Date Issued
01-01-2022
Author(s)
Rathore, Kapil Singh
Sricharan, V.
Preejith, S. P.
Mohanasankar S 
Indian Institute of Technology, Madras
DOI
10.1109/SEGAH54908.2022.9978572
Abstract
The explosion of unobtrusive wearable technology has made seamless data aggregation possible, ultimately improving preventive care and diagnosis. Amidst all these burgeoning data points, the respiratory rate remains a crucial descriptor of health, well-being, and performance. While the traditional modes of measurement are accurate, they remain impractical for long-term respiratory rate measurement in an ambulatory setting. Interestingly, respiratory rate can be estimated from physiological signals like Electrocardiogram, Photoplethysmogram, and accelerometer waveforms. While respiration rate estimation from these methods is accurate when the subject is at rest, the estimation is thrown off by motion artifacts and a relatively poor signal-to-noise ratio during ambulatory movement. Addressing this issue, this work presents a novel Deep Learning-based multitasking network that jointly predicts both respiratory rate and the respiratory waveform, thus aiding in an overall reduction in error scores during various activities, including walking, running, etc. Apart from comparisons against the previous state-of-the-art approaches, this work thoroughly discusses the practical aspects of adopting a Deep Learning approach during inference and briefly alludes to the tradeoff between time complexity, parameter counts, and accuracy. While the proposed approach improved overall estimation accuracy, it inevitably requires more parameters and runtime than a traditional approach.
Subjects
  • Accelerometer

  • Breaths per minute (b...

  • Deep Learning

  • ECG

  • Respiration Modulatio...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback