Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication11
  4. The colored sector search tree: A dynamic data structure for efficient high dimensional nearest-foreign-neighbor queries
 
  • Details
Options

The colored sector search tree: A dynamic data structure for efficient high dimensional nearest-foreign-neighbor queries

Date Issued
01-01-1998
Author(s)
Graf, T.
Veezhinathan Kamakoti 
Indian Institute of Technology, Madras
Janaki Latha, N. S.
C Pandu Rangan 
Indian Institute of Technology, Madras
DOI
10.1007/3-540-68535-9_7
Abstract
In this paper we present the new data structure Colored Sector Search Tree (CSST) for solving the Nearest-Foreign-Neighbor Query Problem (NFNQP): Given a set S of n colored points in ℝD, where D ≥ 2 is a constant, and a subset Sʹ ⊂ Sʹ stored in a CSST, for any colored query point q ∈ IRD a nearest foreign neighbor in Sʹ, i.e. a closest point with a different color, can be reported in O(log n(log log n)D−1) time w.r.t. a polyhedral distance function that is defined by a star-shaped polyhedron with O(1) vertices; note that this includes the Minkowski metrics d1 and d∞. It takes a preprocessing time of O(n(log n)D−1) to construct the CSST. Points from S can be inserted into the set Sʹ and removed from Sʹ in O(log n(log log n)D−1) time. The CSST uses O(n(log n)D−1) space. We present an application of the data structure in the parallel simulation of solute transport in aquifer systems by particle tracking. Other applications may be found in GIS (geo information systems) and in CAD (computer aided design). To our knowledge the CSST is the first data structure to be reported for the NFNQP.
Volume
1449
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback