Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication7
  4. Unit commitment using DP - An exhaustive working of both classical and stochastic approach
 
  • Details
Options

Unit commitment using DP - An exhaustive working of both classical and stochastic approach

Date Issued
05-08-2013
Author(s)
Saravanan, B.
Sikri, Surbhi
K Shanti Swarup 
Indian Institute of Technology, Madras
Kothari, D. P.
DOI
10.1109/ICPEC.2013.6527686
Abstract
In the present electricity market, where renewable energy power plants have been included in the power systems there is a lot of unpredictability in the demand and generation. There are many conventional and evolutionary programming techniques used for solving unit commitment problem. The use of augmented Lagrangian technique by convergence of decomposition method was proposed in 1994, and in 2007 chance constrained optimization was used for providing a solution to the stochastic unit commitment problem. Dynamic Programming is a conventional algorithm used to solve deterministic problem. In this paper DP is used to solve the stochastic model. The stochastic modeling for generation side has been formulated using an approximate state decision approach. The programs were developed in MATLAB environment and were extensively tested for 4 unit 8 hour system. The results obtained from these techniques were validated with the available literature and outcome was satisfactory. The commitment is in such a way that the total cost is minimal. © 2013 IEEE.
Subjects
  • dynamic programming

  • state decision

  • stochasticity

  • unit commitment

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback