Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication7
  4. Analysis of gate-induced drain leakage mechanisms in silicon-germanium channel pFET
 
  • Details
Options

Analysis of gate-induced drain leakage mechanisms in silicon-germanium channel pFET

Date Issued
01-01-2014
Author(s)
Tiwari, Vishal A.
Jaeger, Daniel
Scholze, Andreas
Nair, Deleep R.
DOI
10.1109/TED.2014.2312883
Abstract
Silicon-germanium is an alternative channel material for pMOS FETs at 32-nm node and beyond because of lower threshold voltage and higher channel mobility in high- k metal gate technology. However, gate-induced drain leakage (GIDL) is a major concern at low power technology nodes because of band-to-band and trap-assisted tunneling (TAT) due to reduced bandgap. Here, we have studied the GIDL dependence on temperature as well as drain and substrate bias. Experimental results and Technology computer-aided design (TCAD) simulations suggest that the mechanism responsible for GIDL during off state is mostly phonon-assisted band-to-band tunneling (BTBT) in the top SiGe layer near the drain surface and is further contributed by BTBT at the drain sidewall junction. Other GIDL mechanisms such as TAT at the extension/sidewall dominate for other drain, gate, and substrate bias voltages. © 1963-2012 IEEE.
Volume
61
Subjects
  • Band-to-band tunnelin...

  • gate-induced drain le...

  • high-k metal gate-fir...

  • pFET

  • silicon-germanium (Si...

  • trap-assisted tunneli...

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback