Options
Dynamics of capillary flow in an open superoleophilic microchannel and its application to sensing of oil
Date Issued
01-10-2018
Author(s)
Abstract
We report the dynamics of capillary flow of oil in an open superoleophilic channel. The superoleophilic surface is fabricated by spin coating a layer of PDMS + n-hexane followed by candle sooting. The occurrence of various flow regimes, including the inertial, visco-inertial, and Lucas–Washburn regimes, are studied using analytical modelling as well as experiments. In case of a superoleophilic channel, much shorter inertial regime is observed as compared to that in an oleophilic channel due to the wicking of oil into the micro-roughness grooves ahead to moving bulk liquid meniscus. The study of the effect of channel aspect ratio ε on the mobility parameter kshowed that the mobility parameter k is maximum for an aspect ratio of ε= 1.6 , which is attributed to the balance between the capillary and viscous forces. Finally, we demonstrate the application of the superoleophilic channel integrated with electrodes for impedance-based sensing of oil from an oil–water emulsion.
Volume
22