Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. A polynomial kernel for deletion to ptolemaic graphs
 
  • Details
Options

A polynomial kernel for deletion to ptolemaic graphs

Date Issued
01-11-2021
Author(s)
Agrawal, Akanksha
Anand, Aditya
Saurabh, Saket
DOI
10.4230/LIPIcs.IPEC.2021.1
Abstract
For a family of graphs F, given a graph G and an integer k, the F-Deletion problem asks whether we can delete at most k vertices from G to obtain a graph in the family F. The F-Deletion problems for all non-trivial families F that satisfy the hereditary property on induced subgraphs are known to be NP-hard by a result of Yannakakis (STOC'78). Ptolemaic graphs are the graphs that satisfy the Ptolemy inequality, and they are the intersection of chordal graphs and distance-hereditary graphs. Equivalently, they form the set of graphs that do not contain any chordless cycles or a gem as an induced subgraph. (A gem is the graph on 5 vertices, where four vertices form an induced path, and the fifth vertex is adjacent to all the vertices of this induced path.) The Ptolemaic Deletion problem is the F-Deletion problem, where F is the family of Ptolemaic graphs. In this paper we study Ptolemaic Deletion from the viewpoint of Kernelization Complexity, and obtain a kernel with O(k6) vertices for the problem.
Volume
214
Subjects
  • Gem-free chordal grap...

  • Kernelization

  • Parameterized Complex...

  • Ptolemaic Deletion

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback