Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches
 
  • Details
Options

Segmentation and Classification in Digital Pathology for Glioma Research: Challenges and Deep Learning Approaches

Date Issued
21-02-2020
Author(s)
Kurc, Tahsin
Bakas, Spyridon
Ren, Xuhua
Bagari, Aditya
Momeni, Alexandre
Huang, Yue
Zhang, Lichi
Kumar, Ashish
Thibault, Marc
Qi, Qi
Wang, Qian
Kori, Avinash
Gevaert, Olivier
Zhang, Yunlong
Shen, Dinggang
Khened, Mahendra
Ding, Xinghao
Krishnamurthi, Ganapathy 
Indian Institute of Technology, Madras
Kalpathy-Cramer, Jayashree
Davis, James
Zhao, Tianhao
Gupta, Rajarsi
Saltz, Joel
Farahani, Keyvan
DOI
10.3389/fnins.2020.00027
Abstract
Biomedical imaging Is an important source of information in cancer research. Characterizations of cancer morphology at onset, progression, and in response to treatment provide complementary information to that gleaned from genomics and clinical data. Accurate extraction and classification of both visual and latent image features Is an increasingly complex challenge due to the increased complexity and resolution of biomedical image data. In this paper, we present four deep learning-based image analysis methods from the Computational Precision Medicine (CPM) satellite event of the 21st International Medical Image Computing and Computer Assisted Intervention (MICCAI 2018) conference. One method Is a segmentation method designed to segment nuclei in whole slide tissue images (WSIs) of adult diffuse glioma cases. It achieved a Dice similarity coefficient of 0.868 with the CPM challenge datasets. Three methods are classification methods developed to categorize adult diffuse glioma cases into oligodendroglioma and astrocytoma classes using radiographic and histologic image data. These methods achieved accuracy values of 0.75, 0.80, and 0.90, measured as the ratio of the number of correct classifications to the number of total cases, with the challenge datasets. The evaluations of the four methods indicate that (1) carefully constructed deep learning algorithms are able to produce high accuracy in the analysis of biomedical image data and (2) the combination of radiographic with histologic image information improves classification performance.
Volume
14
Subjects
  • classification

  • deep learning

  • digital pathology

  • image analysis

  • radiology

  • segmentation

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback