Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication2
  4. Spectrum and related sets: a survey
 
  • Details
Options

Spectrum and related sets: a survey

Date Issued
01-06-2021
Author(s)
Kulkarni, S. H.
DOI
10.1007/s41478-019-00214-z
Abstract
In order to understand the behaviour of a square matrix or a bounded linear operator on a Banach space or more generally an element of a Banach algebra, some subsets of the complex plane are associated with such an object. Most popular among these sets is the spectrum σ(a) of an element a in a complex unital Banach algebra A with unit 1 defined as follows: σ(a):={λ∈C:λ-aisnotinvertibleinA}.Here and also in what follows, we identify λ. 1 with λ. Also quite popular is Numerical range V(a) of a. This is defined as follows: V(a):={ϕ(a):ϕisacontinuouslinearfunctionalonAsatisfying‖ϕ‖=1=ϕ(1)}.Then there are many generalizations, modifications, approximations etc. of the spectrum. Let ϵ> 0 and n a nonnegative integer. These include ϵ- condition spectrum σϵ(a) , ϵ- pseudospectrum Λ ϵ(a) and (n, ϵ) - pseudospectrum Λ n,ϵ(a). These are defined as follows: σϵ(a):={λ∈C:‖λ-a‖‖(λ-a)-1‖≥1ϵ}In this and the following definitions we follow the convention : ‖ (λ- a) - 1‖ = ∞ if λ- a is not invertible. Λϵ(a):={λ∈C:‖(λ-a)-1‖≥1ϵ}Λn,ϵ(a):={λ∈C:‖(λ-a)-2n‖1/2n≥1ϵ}. In this survey article, we shall review some basic properties of these sets, relations among these sets and also discuss the effects of perturbations on these sets and the question of determining the properties of the element a from the knowledge of these sets.
Volume
29
Subjects
  • Bounded below

  • Completeness

  • Invertibility

  • Spectrum

  • Transpose

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback