Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication1
  4. Effect of chitosan and hydroxyapatite nanocomposite on dentin erosion: An in-vitro study
 
  • Details
Options

Effect of chitosan and hydroxyapatite nanocomposite on dentin erosion: An in-vitro study

Date Issued
01-09-2022
Author(s)
Gurucharan, Ishwarya
Derick Isaac, D.
Madhubala, M.
Vijay Amirtharaj, L.
Mahalaxmi, Sekar
Jayasree, R.
Sampath Kumar, T.
DOI
10.4103/jioh.jioh_50_22
Abstract
Aim: To evaluate the dentinal tubule occlusion and collagen stabilization potential of nanohydroxyapatite (nHAp) and nanochitosan (nCH) combination paste on eroded dentin surface. Materials and Methods: In this in-vitro study, nHAp was prepared using the microwave-accelerated wet chemical synthesis method and nCH was made by the ionic gelation technique. The particles were characterized separately under dynamic light scattering and made into a paste by mixing them at a ratio of 1:1, which was further analyzed using Fourier-transform infrared spectroscopy (FTIR). Dentin slabs were prepared from 32 extracted human molars and subjected to erosion by exposing to 3% citric acid for 5 min. They were divided into four groups by convenience sampling method (n = 15): group I-control (no treatment); group II-nHAp; group III-nCH; group IV-nHA-nCH paste. All dentin samples were treated according to their respective groups by the active application of pastes using microbrushes for 1 min everyday for 14 days. Later, the samples were subjected to FTIR and scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX) analysis. Statistical analysis was done using one-way analysis of variance (P 0.05). Results: SEM-EDX revealed complete occlusion of dentinal tubules in the nHA-nCH group with HAp deposits on the surface. The Ca/P ratio of various groups was significantly different from each other (control group-1.05, nHAp-1.64, nCH-1.14, and nHA-nCH-1.71) (P 0.05). The FTIR spectra marked the presence of amide I peak in nCH and nHA-nCH groups, indicating collagen stabilization. Conclusion: The nHA-nCH paste shows a potential for tubular occlusion and stabilizes both the inorganic and organic components of eroded dentin, respectively.
Volume
14
Subjects
  • Chitosan Nanoparticle...

  • Dentin Collagen

  • Erosion

  • Hypersensitivity

  • Nanohydroxyapatite

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback