Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis
 
  • Details
Options

AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis

Date Issued
01-01-2020
Author(s)
Raju, Jaya Chandra
Murugesan, Balamurali
Ram, Keerthi
Sivaprakasam, Mohanasankar 
Indian Institute of Technology, Madras
DOI
10.1007/978-3-030-61598-7_10
Abstract
The ability to generate multiple contrasts for the same patient is unique about MRI and of very high clinical value. In this work, we take up the problem of modality synthesis in multimodal MRI and propose an efficient, multiresolution encoder-decoder network trained like an autoencoder that can predict missed inputs at the output. This can help in avoiding the acquisition of redundant information, thereby saving time. We formulate and demonstrate our proposed AutoSyncoder network in a GAN and cyclic GAN setting, and evaluate on the BRATS-15 multimodal glioma dataset. A PSNR ranging between 29 to 30.5 dB, and SSIM over 0.88 is achieved for all the modalities, with simplistic training, thereby establishing the potential of our approach.
Volume
12450 LNCS
Subjects
  • Deep learning

  • Image synthesis

  • Imputation

  • MRI

Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback