Options
Shape preserving rational cubic trigonometric fractal interpolation functions
Date Issued
01-12-2021
Author(s)
Abstract
This paper is devoted to a hierarchical approach of constructing a class of fractal interpolants with trigonometric basis functions and to preserve the geometric behavior of given univariate data set by these fractal interpolants. In this paper, we propose a new family of C1-rational cubic trigonometric fractal interpolation functions (RCTFIFs) that are the generalized fractal version of the classical rational cubic trigonometric polynomial spline of the form pi(θ)∕qi(θ), where pi(θ) and qi(θ) are cubic trigonometric polynomials with four shape parameters in each sub-interval. The convergence of the RCTFIF towards the original function in C3 is studied. We deduce the simple data dependent sufficient conditions on the scaling factors and shape parameters associated with the C1-RCTFIF so that the proposed RCTFIF lies above a straight line when the interpolation data set is constrained by the same condition. The first derivative of the proposed RCTFIF is irregular in a finite or dense subset of the interpolation interval and matches with the first derivative of the classical rational trigonometric cubic interpolation function whenever all scaling factors are zero. The positive shape preservation is a particular case of the constrained interpolation. We derive sufficient conditions on the trigonometric IFS parameters so that the proposed RCTFIF preserves the monotone or comonotone feature of prescribed data.
Volume
190