Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Indian Institute of Technology Madras
  3. Publication3
  4. Cooperative B-H and Si-H Bond Activations by κ<sup>2</sup>- N, S-Chelated Ruthenium Borate Complexes
 
  • Details
Options

Cooperative B-H and Si-H Bond Activations by κ<sup>2</sup>- N, S-Chelated Ruthenium Borate Complexes

Date Issued
18-01-2021
Author(s)
Zafar, Mohammad
Ramalakshmi, Rongala
Ahmad, Asif
Antharjanam, P. K.Sudhadevi
Bontemps, Sébastien
Sabo-Etienne, Sylviane
Ghosh, Sundargopal
DOI
10.1021/acs.inorgchem.0c03306
Abstract
Cooperative E-H (E = B, Si) bond activations employing κ2-N,S-chelated ruthenium borate species, [PPh3{κ2-N,S-(NS2C7H4)}Ru{κ3-H,S,S′-H2B(NC7H4S2)2}], (1) are established. Treatment of 1 with BH3·SMe2 yielded the six-membered ruthenaheterocycle [PPh3{κ2-S,H-(BH3NS2C7H4)}Ru{κ3-H,S,S'-H2B(C7H4NS2)2}] (2) formed by a hemilabile ring opening of a Ru-N bond and capturing of a BH3 unit coordinated in an "end-on"fashion. On the other hand, the bulky borane H2BMes shows different reactivity with 1 that led to the formation of the two dihydroborate complexes [{κ3-S,H,H-(NBH2Mes)(S2C7H4)}Ru{κ3-H,S,S'-H2B(C7H4NS2)2}] (3) and [PPh3{κ3-S,H,H-(NBH2Mes)(S2C7H4)}Ru(κ2-N,S-C7H4NS2)] (4), in which H2BMes has been inserted into the Ru-N bond of the initial κ2-N,S-chelated ligand. In an attempt to directly activate hydrosilanes by 1, reactions were carried out with H2SiPh2 that yielded two isomeric five-membered ruthenium silyl complexes, namely [PPh3{κ2-S,Si-(NSiPh2)(S2C7H4)}Ru{κ3-H,S,S'-H2B(C7H4NS2)2}] (5a,b), and the hydridotrisilyl complex [Ru(H){κ2-S,Si-(SiPh2NC7H4S2}3] (6). These complexes were generated by Si-H bond activation with the release of H2 and the formation of N-Si and Ru-Si bonds. When the reaction of 1 was carried out in the presence of PhSiH3, the reaction only produced the analogous complexes [PPh3{κ2-S,Si-(NSiPhH)(S2C7H4)}Ru{κ3-H,S,S'-H2B(C7H4NS2)2}] (5a′,b′). Density functional theory (DFT) calculations have been used to probe the bonding modes of boranes/silane with the ruthenium center.
Volume
60
Indian Institute of Technology Madras Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback